

Evaluation and Identification of Blood Stains in Crime Sceneswith ultra-portable NIR Spectrometer

José Francielson. Q. Pereira^{1*}, Carolina S. Silva¹, Maria Júlia L. Vieira², Maria Fernanda Pimentel^{2*}, André Braz¹, Ricardo S.

Honorato³

¹Department of Fundamenta Chemistry, Federal University of Pernambuco, Recife, Brazil; ² Department of Chemical Engineering, Federal University of Pernambuco, Recife, Brazil; ³ Federal Police, Recife, Brazil. *e-mail: **josefrancielson.queiroz@gmail.com**

Introduction Human Common Blood False-positive Often found in Hinders blood crime scenes identification Complicates evidence One of the most analysis important evidence Allows DNA analysis Increases time and cost of investigation and suspect identification

Objective: Develop a methodology for analysis of suspicious blood stains at crime scenes that allows unequivocal identification of human provenance by near infrared spectroscopy (NIR), with a handheld instrument, associated to the multivariate classification technique PLS-DA.

Material and Methods

Spectral acquisition in triplicate with spectrometer microNIR 1700

Tab1. Resume of samples spectra acquisition.

Substrate	Samples (nº of spectra)				
	HB	AB	CFP		
Porcelain 2 x ceramic 1	96	57	105		
Ceramic 1 x ceramic 2	110	64	105		
Porcelain 1 x Porcelain 2	108	57	105		
Porcelain 1x ceramic 1 *	116	64	105		

* Only cat and dog blood samples

Results and Discussion

- ✓ Spectral preprocessing techniques tested: normalization (max/area/range), SNV, 1^a e 2 ^a deriv. SG, Smooth SG filter (2 order polynomial, window of 7-15 points), mean center;
- ✓ Generalized least-squares weighting (GLSW) was applied to reduce the influence of different substrates used in a same model;
- ✓ Best results: smooth SG filter (2^a order polynomial, 9 points window), normalization by area, GLSW and mean center.

Tab 2. Classification results for the training and external validation sets. Sensibility (Sn), Specificity (Sp).

		PLS-DA (Smooth + Norm (area) + GLSW α=0.02 + MC)						
Substrates	Samples	Cross-Validation			Prediction			
		LV	Sn	Sp	Class Error	Sn	Sp	Class Error
Porcelain 2 x Ceramic 1	CFP		1.0	0.99	0.0043	1.0	1.0	
	AB	3	1.0	1.0	0	1.0	1.0	0
	НВ		1.0	1.0	0	1.0	1.0	
Ceramic 1 x Ceramic 2	CFP		1.0	1.0		0.94	0.99	0.033
	AB	5	1.0	1.0	0	1.0	0.98	0.0089
	НВ		1.0	1.0		1.0	0.97	0.013
X Decrease Letter 0	CFP		1.0	1.0	0	0.96	1.0	0.019
	AB	6	1.0	0.98	0.0090	1.0	0.99	0.0054
	НВ		0.98	0.99	0.011	0.97	0.96	0.033
Porcelain 1 x Ceramic 1	CFP		1.0	1.0		1.0	1.0	
	AB *	3	1.0	1.0	0	1.0	1.0	0
	НВ		1.0	1.0		1.0	1.0	

* Only cat and dog blood samples

Example of Scores for Prediction from two models

Models built with samples prepared on same kind of substrates show the worst results, maybe due to differences in the pigments. Models combining different substrates present more suitable results.

Conclusion

There were **no false negative to human blood** and although few samples were misclassified, results show the potential of handheld MicroNir and PLS-DA to unequivocally identify human blood stains on different floor tiles in a fast, nondestructive and reliable way.

